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Intro Outline

Outline of the Course

Brief Introduction to Bayesian Methods
Part 1: Mixture Priors for Linear Settings

- Linear regression models (univariate and multivariate responses)
- Matlab code on simulated data
- Other linear settings (categorical responses and survival outcomes)
- Applications to high-throughput data from Bioinformatics
- Models that incorporate biological information

Part 2: Variable Selection for Mixture Models
- Finite mixture models for sample clustering
- Simulated data and applications to microarrays

Part 3: Functional Data & Wavelets
- A brief introduction to wavelets
- Curve regression and classification
- Applications to NIR spectral data from Chemometrics
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Intro Bayesian Methods

Brief Introduction to Bayesian Methods

Intuition: Combine inference from data with prior information

Model: y |θ ∼ f (y |θ)

θ unknown (parameter, missing data, latent variable, ...)

Bayesian point of view:

- θ has a probability distribution reflecting our uncertainty about it
- y is known, so we should condition on it

Then θ ∼ π(θ) and inference is done using Bayes theorem

p(θ|y) =
f (y |θ)π(θ)

∫

f (y |θ)π(θ)dθ

p(θ|y) ∝ f (y |θ)π(θ)

posterior ∝ likelihood x prior
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Intro Bayesian Methods

Bayes Theorem

p(θ|y) ∝ f (y |θ)π(θ)

p(θ) is our uncertainty about θ before seeing the data

p(θ|y) is our uncertainty about θ after seeing the data

the integral in Bayes theorem is a normalizing constant that
makes p(θ|y) integrate (sum) to 1

The posterior distribution of θ can be summarized through:
- point estimates (mean, median, mode)
- interval estimates (HPD regions or lower/upper α/2 percentiles)
- hypothesis testing (often Bayes factors p(y |M1)

p(y |M2)
= p(M1|y)/p(M2|y)

p(M1)/P(M2) )

Prediction of a future observation z (independent of y given θ)

p(z|y) =

∫

p(z, θ|y)dθ =

∫

p(z|θ)p(θ|y)dθ
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Intro Bayesian Methods

Bayes and Decision Theory

If we are willing to quantify the value of different consequences it
is possible to use posterior probabilities as a basis for decision
theory.

Given a set of actions (rules) a ∈ A and a loss function L(θ, a) we
minimize the posterior expected loss

minaEθ|yL(θ, a) = mina

∫

L(θ, a)p(θ|y)dθ → θ̂

L2-loss, L(θ, a) = (θ − a)2, a ∈ R → θ̂ = E(θ|y)

L1-loss, L(θ, a) = |θ − a|, a ∈ R → θ̂ = median(θ|y)
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Intro Bayesian Methods

0-1 loss (hyp. testing) H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,
a = {0, 1} = {accept H0, reject H0},

L(θ, a) =

{

a, if θ ∈ Θ0

1 − a, if θ ∈ Θ1

Eθ|yL(θ, a) =

{

P(θ ∈ Θ1|y), if a = 0
P(θ ∈ Θ0|y), if a = 1

Bayes rule: accept H0(a = 0) if P(θ ∈ Θ0|y) > P(θ ∈ Θ1|y)
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Intro Bayesian Methods

Bayes in Practice

How do I quantify my prior information?

- conjugate choices
- diffuse specifications

How do I assess the effect of my prior beliefs?

- sensitivity analyses across alternative specifications can reveal
stability (or not) to prior models.

How do I do integrals? i.e., p(θ|y) with non-standard or
non-conjugate choices, prediction, marginal inference on single
parameters as p(θi |y) =

∫

p(θ|y)dθ−i

- Markov chain Monte Carlo methods offer a solution.
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Intro Bayesian Methods

Markov Chain Monte Carlo Methods

MCMC methods achieve inference via Monte Carlo integration using
simulated values generated from a Markov chain with p(θ|y) as
stationary distribution.
• Gibbs sampling: given θ0, at iteration t , sample all parameters from

θ
(t)
i ∼ p(θi |θ

(t−1)
−i , y) (full conditionals)

Can prove that θ(t) → θ ∼ p(θ|y) in distribution as t → ∞
Samples are summarized for posterior inference via Monte Carlo
integration (after convergence at t0)

E(f (θ)) =
1
m

t0+m
∑

t0+1

f (θ(t))

(posterior mean, posterior quantiles, kernel estimates)
Note: use prior distributions which are conditionally conjugate.
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Intro Bayesian Methods

• Metropolis-Hastings: when full conditionals are not available in
closed form, v is sampled from a proposal distribution q(·, θ(t−1)) and
accepted (θ(t) = v) with probability

min
[

1,
p(θ(t−1)|y)q(v , θ(t−1))

p(v |y)q(θ(t−1), v)

]

Can prove that θ(t) → θ ∼ p(θ|y) in distribution as t → ∞

• Metropolis algorithm: M-H with a symmetric proposal,

q(u, v) = q(v , u)
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